

AUSTRALIAN STANDARDS

Australian Standard	Definition
AS 1397:2021	Continuous hot-dip metallic coated steel sheet and strip — Coatings of zinc and zinc alloyed with aluminium and magnesium
AS 1530.8.2:2018	Methods for fire tests on building materials, components and structures, Part 8.2: Tests on elements of construction for buildings exposed to simulated bushfire attack — Large flaming sources
AS 1562.1:2018	Design and installation of sheet roof and wall cladding - Part 1: Metal
AS 3959:2018	Construction of buildings in bushfire-prone areas
AS 4055:2021	Wind loads for housing
AS/NZS 1170.2:2021	Structural design actions, Part 2: Wind actions
AS/NZS 1530.3:1999	Methods for fire tests on building materials, components and structures Part 3: Simultaneous determination of ignitability, flame propagation, heat release and smoke release (Reconfirmed 2016)
AS/NZS 2728:2013	Pre-finished/pre-painted sheet metal products for interior/exterior building applications - Performance requirements

Contents

1.0	Introduction and General Notes	4
	Benefits of VENT-A-ROOF®	4
	How the system works	4
	Scope	4
	Warranties	4
	General notes to read before you use	
	This guide	4
	Professional advice	4
2.0	Design Preliminaries	5
	Materials and finishes	5
	Material specifications	5
	NCC 2022 Roof space	
	ventilation requirements	5
	NCC 2022 Volume 1 and Volume 2 Extract	5
	Table F8D5 Volume 1 and Table 10.8.3	_
	ABCB Housing Provisions	5
	VENT-A-ROOF® high level open ventilation area	6
	VENT-A-ROOF [®] airflow capacities	7
	Airflow capacity/air exchange calculation	0
	example for a typical light industrial shed	8
	VEINI-A-KOOF® BAL (bushfire attack level) performance	q
	VENT-A-ROOE [®] wind pressure performance	9
3.0	Installation - New Installations	10
31	Step 1 - Roof sheeting installation	10
3.2	Step 2 - Begin VENT-A-ROOF® Jouvre install	13
33	Step 3 - Slide Jouvre over sheet	13
3.4	Step 4 - Fix Jouvre to sheet	13
3.5	Step 5 - Add additional louvres	13
3.5	Step 6 - Install ridge cap	1/
3.0	Hin install	14 1/1
3.7 3.8	Scrow pattorn	14
5.0		14

4.0	Installation - Retro-Fit	15
4.1	Step 1 – Determine replacement ridge	
	flashing dimensions	15
4.2	Step 2 – Remove existing ridge	15
4.3	Step 3 – Mark roof sheets to be cut	15
4.4	Step 4 – Cut back the sheets	15
4.5	Step 5 – Install VENT-A-ROOF® louvres	15
4.6	Step 6 – Install new ridge flashings	15
4.7	Step 7 – Clean up	15
4.8	Step 8 – Install eave vents	15
5.0	Appendices	16
	FORM 15 – BAL-12.5 – 40	16
	PROACT Fire Engineering opinion -	
	24th June 2024	17
	Ventilation - NCC2022 - 10.8.3	19
	FORM 15 Australian Wind Regions A 1-7, B, C & D	20
	JCE A150 - Letter of advice - VENT-A-ROOF® product	21
	Performance test summary TAS-100A on EZ VENT-N-CLOSURE for VENT-A-ROOF®	23
	Performance test report ASTM E283 air leakage test on metal roof vent for VENT-A-ROOF®	24

1.0 INTRODUCTION AND GENERAL NOTES

VENT-A-ROOF[®] is the latest technology in roof ventilation for LYSAGHT[®] steel roofs. VENT-A-ROOF[®] is a cost-effective, architecturally attractive solution for:

- Commercial buildings
- Light Industrial buildings
- Residential homes
- Sheds

VENT-A-ROOF® is a non-mechanical continuously operating, waterproof, cyclone-rated, metal roof ventilation system that provides a condensation management solution. Managing roof cavity condensation mitigates mould issues and contributes to improved health and safety in buildings across Australia.

BENEFITS OF VENT-A-ROOF®

- Improves roof ventilation with continuous airflow, reducing both roof space temperature and energy costs associated with cooling the building
- Full roof ventilation is made possible with both ridge and hip vents
- Mitigates condensation, humidity and mould
- Australian wind, bushfire and cyclone rated
- Cost-effective and integrated into the roof providing a low profile attractive alternative to turbine-style ventilators
- Keep cooler in summer and remove condensation in winter
- Certified for use in BAL 12.5 40 regions to prevent ember ingress at ridge and hips
- Certified for use in cyclonic regions
- D-T-S solution for NCC 2022 condensation management and roof ventilation requirements for metal roofs >= 10 degree pitch

HOW THE SYSTEM WORKS

Figure 1.1:

This deceptively simple passive system allows fresh outside air to be taken into the roof space either through soffit/eave vents or in through the system itself. This cooler air rises from these intake points and mixes within the ceiling or building space to create a natural flow of air that leaves the hot air escaping through the top of the ridge/skillion.

Simultaneously, external breezes provide a positive airflow which crosses over the ridge of the house creating negative pressure which pulls air out from the ridge vent. Effectively, two thermal effects create a continuous flow of air, allowing cool air into the roof/building space whilst extracting hot air.

SCOPE

This manual is a guide to the design and installation of the VENT-A-ROOF® system for steel roofing and walling manufactured by Lysaght. We intend that it be used by all trades and professions involved with specifying and applying the VENT-A-ROOF® range of products.

We refer only to genuine steel roofing and walling manufactured by us and marketed under our brand names. Our recommendations should only be used for our products because they are based on comprehensive testing of our profiles, base metal thicknesses (BMT) and material finishes. More general design in installation with regard to steel cladding may be found in the LYSAGHT® Roofing and Walling Installation Manual. This manual covers a range of topics not covered in this manual.

WARRANTIES

For over 150 years we have consistently manufactured the highest quality building products. The LYSAGHT[®] brand is synonymous with Australian building. Our continuing confidence in our products is shown in the warranties we offer.

Our products are engineered to perform according to our specifications only if they are used in the appropriate conditions and installed to the recommendations in this manual and our other publications.

Naturally, the warranties require specifiers and installers to exercise due care in how the products are applied and installed and are subject to final use and installation. Also, owners need to maintain the finished work. The VENT-A-ROOF® system will not negatively impact warranties applicable to LYSAGHT® products.

Consideration should be given to the suitability of using the VENT-A-ROOF® system in areas of marine influence (applications utilising COLORBOND® Ultra steel). Alternate ventilation systems may be better suited to these environments.

The VENT-A-ROOF® system is not suitable for use in severe marine influence (applications utilising PERMALITE® Aluminium or SUPERDURA® Stainless steel).

We invite you to ask about the warranties applicable to your proposed purchase, at your supplier of LYSAGHT® products.

GENERAL NOTES TO READ BEFORE YOU USE THIS GUIDE

This Manual has been prepared for the VENT-A-ROOF® system for roofing applications using components manufactured or supplied by Lysaght.

Whilst this manual primarily deals with VENT-A-ROOF® in roofing applications the principles apply equally to walling applications. For specific walling advise speak with your local Lysaght branch. VENT-A-ROOF® louvres are not recommended for use at wall bases where they may be subjected to constant moisture.

This manual covers installation procedures for both new and retro fit applications in both non-cyclonic and cyclonic applications.

PROFESSIONAL ADVICE

All erection and connection details are to be made in accordance with the relevant standard connection details contained in this Manual. We recommend you get professional advice to ensure your particular needs are adequately met.

To ensure maximum lifespan of your building, consult your nearest Lysaght branch for information regarding maintenance, handling, storage and any other technical assistance you may require.

2.0 DESIGN PRELIMINARIES

MATERIALS AND FINISHES

<code>VENT-A-ROOF®</code> components and <code>LYSAGHT®</code> cladding and flashings are manufactured from Australian made steel from <code>BlueScope</code>.

MATERIAL SPECIFICATIONS

VENT-A-ROOF[®] steel vent components are manufactured from 0.4mm BMT aluminium/zinc/magnesium alloy coated steel.

LYSAGHT® steel cladding and flashings are available in a range of materials and finishes including:

- Next generation ZINCALUME[®] aluminium/zinc/magnesium alloy coated steel complying with AS 1397 G300, AM125 125g/m² minimum coating mass.
- COLORBOND[®] steel is pre-painted steel for exterior roofing and walling. It is the most widely used. The painting complies with AS/NZS 2728 and the steel base is an aluminium/zinc alloy-coated steel complying with AS 1397. Minimum coating mass is AM100 (100g/m²).
- COLORBOND[®] Metallic steel is pre-painted steel for superior aesthetic qualities displaying a metallic sheen.
- COLORBOND® Ultra steel is pre-painted steel for severe coastal or industrial environments (generally within about 100m - 200m of the source). The painting complies with AS/NZS 2728 and the steel base is an aluminium/zinc alloy-coated steel complying with AS 1397. Minimum coating mass is AM150 (150g/m²).
- VENT-A-ROOF[®] louvres are not recommended for use with SUPERDURA[®] Stainless steel.

NCC 2022 ROOF SPACE VENTILATION REQUIREMENTS

Volume 1 of National construction code (NCC 2022) covering class 2-9 buildings outlines requirements for Ventilation of roof spaces at ;

Section F -Health and Amenity, Part F8 -Condensation management, Clause D5- Deemed to satisfy provisions for Ventilation of roof spaces

Similarly ABCB Housing provisions standard of NCC 2022 covering Class 1 and Class 10 Buildings outlines requirement for Ventilation of roof spaces at;

Section 10 -Health and Amenity, Part 10.8 -Condensation management, Clause 10.8.3 Deemed-to-satisfy provisions for Ventilation of roof spaces.

FURTHER INFORMATION ON PRODUCTS AND SERVICES

www.lysaght.com

Your supplier of LYSAGHT[®] products

Lysaght Information Service on 1800 641 417

NCC 2022 VOLUME 1 AND VOLUME 2 EXTRACT F8D5 VOLUME 1 AND CLAUSE 10.8.3 ABCB HOUSING PROVISIONS

VENTILATION OF ROOF SPACES

- (1) In climate zones 6, 7 and 8, a roof must have a roof space that -
 - (a) is located -
 - (i) immediately above the primary insulation layer, or
 - (ii) immediately above sarking with a vapour permeance of not less than 1.14µg/N.s, which is immediately above the primary insulation layer, or
 - (iii) immediately above the ceiling insulation which meets the requirements of J3D7(3) and J3D7(4); and
 - (b) has a height of not less than 20mm; and
 - (c) is either -
 - ventilated to outdoor air through evenly distributed openings in accordance with Table F8D5; or
 - (ii) located immediately underneath roof tiles of an unsarked tiled roof.
- (2) The requirements of (1) do not apply to a -
 - (a) concrete roof; or
 - (b) roof that is made of structural insulated panels; or
 - (c) roof that is subject to Bushfire Attack Level FZ requirements in accordance with AS 3959.

The above is an extract from NCC 2022 Volume 1. These are mirrored in ABCB Housing provisions clause 10.8.3

TABLE F8D5 VOLUME 1 AND TABLE 10.8.3ABCB HOUSING PROVISIONS

Roof pitch	Ventilation openings
<10°	25,000 mm²/m provided at each of two opposing ends
≥10° and <15°	25,000 mm²/m provided at the eaves and 5,000 mm²/m at high level
≥15° and <75°	7,000 mm²/m provided at the eaves and 5,000 mm²/m at high level, plus an additional 18,000 mm²/m at the eaves if the roof has a cathedral ceiling

Table Notes

- Ventilation openings are specified as a minimum free open area as per metre length of the longest horizontal dimension of the roof.
- For the purpose of this table, high level openings are openings provided at the ridge or not more than 900mm below the ridge or highest point of the roof space, measured vertically.

VENT-A-ROOF® HIGH LEVEL OPEN VENTILATION AREA

High level Open Ventilation area provided by VENT-A-ROOF[®] for all metal roofs \geq 10 degree pitch is 9,504 mm²/m for single sided applications and 19,008 mm²/m for dual sided applications.

Figure 2.1:

Example for High level ventilation calculation for a gable roof with VENT-A-ROOF $^{\circledast}.$

- Roof Pitch = 22 deg
- Longest Horizontal Dimension = 20 m
- NCC minimum ventilation free open area required/m = $20 \times 1 \times 5,000 = 100,000 \text{ mm}^2$
- Ventilation opening provided (with VENT-A-ROOF[®] single sided) = 9504 x 20 x 1 = 190,080 mm²
- Ventilation opening provided (with VENT-A-ROOF[®] Ridge/dual sided) = 19008 x 20 x 1 = 380,160 mm²
- The high level ventilation openings provided by VENT-A-ROOF® exceeds the requirement

VENT-A-ROOF® AIRFLOW CAPACITIES

Whilst outside NCC2022 requirements, airflow data provides valuable information to determine airflow changeover for both residential and commercial/industrial applications.

VENT-A-ROOF® airflow capacities at various wind speeds and ambient v attic temperature variation are provided at Table 1.

Table 1

Airflow Calculations

	Wind Pressure	Wind speed Vind Pa		External air temp differential to attic space	300mm turbine ventilator		Im VENT-A-ROOF [®] louvre skillion ridge (with 45-50mm throat dimension)		Im VENT-A-ROOF® louvre Gable/ Hip Ridge (2m of louvre) (with 45-50mm throat dimension)		Im VENT-A-ROOF® Iouvre skillion ridge = 1x300mm turbine ventilator		Im VENT-A-ROOF® louvre gable/hip ridge (2m of louvre)	
	Ĩ	km/h	Knots	(degrees Celsius)	Airflow (m³/s)	Heat Extraction (kW)	Airflow (m³/s)	Heat Extraction (kW)	Airflow (m³/s)	Heat Extraction (kW)	Airflow (m³/s)	Heat Extraction (kW)	Airflow (m³/s)	Heat Extraction (kW)
				6	0.019	0.137	0.006	0.046	0.013	0.091	3	3	1.5	1.5
	0		0	12	0.020	0.288	0.007	0.096	0.013	0.192	3	3	1.5	1.5
	0 0		0	18	0.021	0.454	0.007	0.151	0.014	0.302	3	3	1.5	1.5
Ise				40	0.022	1.056	0.007	0.352	0.015	0.704	3	3	1.5	1.5
yhou	2.0 6			6	0.029	0.206	0.01	0.069	0.019	0.138	3	3	1.5	1.5
tore		6	3.2	12	0.030	0.429	0.01	0.143	0.020	0.286	3	3	1.5	1.5
igle s				18	0.031	0.677	0.01	0.226	0.021	0.451	3	3	1.5	1.5
Sir				6	0.034	0.247	0.011	0.082	0.023	0.165	3	3	1.5	1.5
	3.6	8	8 4.3	12	0.035	0.5	0.012	0.167	0.023	0.333	3	3	1.5	1.5
				18	0.036	0.787	0.012	0.262	0.024	0.524	3	3	1.5	1.5
				6	0.051	0.37	0.017	0.123	0.034	0.246	3	3	1.5	1.5
	8.0	12 6.5	6.5	12	0.052	0.753	0.017	0.251	0.035	0.502	3	3	1.5	1.5
				18	0.053	1.137	0.018	0.379	0.035	0.758	3	3	1.5	1.5
				6	0.060	0.432	0.02	0.144	0.040	0.288	3	3	1.5	1.5
	12.5	15	8.1	12	0.060	0.871	0.02	0.29	0.040	0.58	3	3	1.5	1.5
				18	0.061	1.324	0.02	0.441	0.041	0.882	3	3	1.5	1.5
	14.2	16	8.6	6	0.063	0.456	0.021	0.152	0.042	0.304	3	3	1.5	1.5
	14.2	10	0.0	12	0.065	0.935	0.022	0.312	0.043	0.623	3	3	1.5	1.5

• Airflows represented for 0 km/h (Knots) wind speed are entirely due to convection.

• Increasing wind speeds will cool a sunlit roof hence reductions in attic v ambient temperatures for higher wind speeds.

• Shaded area represents default Australian design pressure of 12.5 Pa.

AIRFLOW CAPACITY/AIR EXCHANGE CALCULATION EXAMPLE FOR A "TYPICAL" LIGHT INDUSTRIAL SHED

Shed Dimensions

Length	50m
Width	18m
Wall height at eave	3m
Roof pitch	5 degrees
Roof Apex height	3.790m
Wind speed	Default design pressure 12.5pa or 8.1knots
External v internal air temp	12 degrees – warm day

Calculation

Step 1 – Shed Air Volume

• Air volume of shed = (50m x 18m x 3m) + (50m x 9m x 0.790m) = 2700 + 355.5 = 3055.5m³

Step 2 – Air Extraction Rate

• From Table 1 we can see that the Airflow/Air Extraction Rate per metre of louvre at the ridge given a 12 degree external to internal temperature variation and 8.1knts of wind = 0.040m³/s

Step 3 – Air Volume Extracted per Hour

• $0.040 \text{ m}^3/\text{s}$ per metre of louvre x 50m building length = $2\text{m}^3/\text{second}$

x 60 seconds = $120m^3/min$ x 60 minutes = $7200m^3/hr$

Step 4 – Air Exchange Rate

- Shed air volume = 3055.5m³
- Volume extracted per hour = 7200m³

Therefore:

3055.5m³ divided by 7200m³/hr airflow provides for **complete shed air changeover every .424 hours or every 25 minutes** from the VENT-A-ROOF[®] system alone.

In practice, additional air changeover will occur via doorways, windows, shed wall to roof junctions etc.

VENT-A-ROOF® BAL (BUSHFIRE ATTACK LEVEL) PERFORMANCE

All new residential construction in Australia must undergo a BAL (Bushfire Attack Level) assessment as part of the building application process. Properties are assessed against 6 Bushfire attack Levels as outlined in Table 2.

Table 2

BUSHFIRE ATTACK LEVEL (BAL)	BAL ZONE DESCRIPTION
BAL Low	There is insufficient risk to warrant specific construction requirements
BAL-12.5	Ember attack. (BAL 12.5 Construction Requirements) i.e. Non-combustible coverings roof/wall junction sealed. Openings fitted with non-combustible ember guards. Roof to be fully sarked
RAL 10	Increasing levels of ember attack and burning debris ignited by windborne embers, together with increasing heat flux. (BAL 19 Construction Requirements)
DAL - 19	i.e. Non-combustible coverings roof/wall junction sealed. Openings fitted with non-combustible ember guards. Roof to be fully sarked
	Increasing levels of ember attack and burning debris ignited by windborne embers, together with increasing heat flux. (BAL 29 Construction Requirements)
BAL-29	i.e. Non-combustible coverings roof/wall junction sealed. Openings fitted with non-combustible ember guards. Roof to be fully sarked
	Increasing levels of ember attack and burning debris ignited by windborne embers, together with increasing heat flux and with the increased likelihood of exposure to flames. (BAL 40 Construction Requirements)
DAL - 40	i.e. Non-combustible coverings roof/wall junction sealed. Openings fitted with non-combustible ember guards. Roof to be fully sarked and no roof mounted evaporative coolers
	Direct exposure to flames from fire, in addition to heat flux and ember attack. (BAL FZ Construction Requirements)
BAL – FZ	i.e. Roof with FRL of 30/30/30 or tested bushfire resistance to AS 1530.8.2. Roof/wall junction sealed. Openings fitted with non-combustible ember guards. No roof mounted evaporative coolers

VENT-A-ROOF® has been independently assessed as suitable ridge and hip treatment to prevent ember ingress for BAL-12.5 - BAL - 40 zones

LYSAGHT® steel cladding and ancillary products combustibility status are outlined in NCC2022 compliance documents located at www.lysaght.com/resources/ncc-australia-compliance

VENT-A-ROOF® WIND PRESSURE PERFORMANCE

Air leakage testing conducted at Farabaugh Engineering and Testing, show that VENT-A-ROOF[®] assists pressure equalisation between internal and external pressures. Testing results as shown at Table 3, demonstrate that a greater volume of air "escapes" through the VENT- A-ROOF[®] system than what is let in, an approximate 8% difference. The results show that as the test pressure increases, the rate of air escaping through the VENT-A-ROOF[®] system increases.

NB Test results Infiltration = air exiting the roof cavity and Exfiltration = air entering the roof cavity.

(Nielson, 2024)

Table 3

Tost Drossuro	To at Drossuro	Infilt	tration	Exfi	tration	Ratio (%)			
(Psf)	(Pa)	Air leakage rate (Cfm)	Air leakage rate (m³/s)	Air leakage rate (Cfm)	Air leakage rate (m³/s)	Infiltration Exfiltration		(m ³ /s)	
1.57	75.17	44	0.020765688	37.5	0.017698029	54%	46%	0.003067658	
6.24	298.77	86.1	0.040634675	74.5	0.035160085	54%	46%	0.00547459	

Based on these results, it is determined that installation of the VENT-A-ROOF® system to ridgeline areas of metal clad roofing to residential and commercial properties, will reduce internal pressures and as such reduce structural loads to these structures during cyclonic and high wind events. (Nielson, 2023)

VENT-A-ROOF[®] has been independently assessed and certified as suitable for use in cyclonic regions when affixed in accordance with the VENT-A-ROOF[®] Design and Installation Guide for cyclonic regions.

3.0 INSTALLATION - NEW INSTALLATIONS

3.1 STEP 1 - ROOF SHEETING INSTALLATION

Install LYSAGHT CUSTOM ORB[®], LYSAGHT TRIMDEK[®] or LYSAGHT KLIP-LOK 700[®] sheeting in accordance with the LYSAGHT[®] Roofing and Walling Installation Manual, available on the Lysaght website.

Critical dimensions for roof ridge batten position and ridge throat dimensions are shown at Figure 3.1.1.

Figure 3.1.1

Table 4	Dimensions (mm)									
IYSAGHT® r	oll top ridge	Batten			Sheet	Throat		Ridge		
	Apex	ridge to to batten	e of	Sheet overhang	Sheet to	Ridge legs				
		15°	22.5°	25°	top of batten B	sneet -	Тое	Step/Raise	Pan	
State	Region		Α			С	E	F	G	
QLD	SEQ & Rockhampton	180	175	170	95	65-60	20	25	112	
	Mackay, Townsville, Cairns	205	195	190	95	125-120	25	25	130	
NSW	Coffs Harbour									
	Cardiff		165	160		60-55	17.5	25		
	Emu Plains									
	Batemans Bay	175			95				106	
	Canberra									
	Tamworth									
	Dubbo									
VIC	Lyndhurst									
	Albury	175	170	165	00		175	25	102	
	Geelong	175	170	105	90	33-30	17.5	20	102	
	Campbellfield									
TAS	Hobart	175	170	165	00		175	25	100	
	Launceston	1/5	170	COL	90	55-50	17.5	25	102	
SA	Mile End	165	155	150	01	2017	12	22	01	
	Gilman	105	155	150	91	30-17	12	22	31	
WA	Forrestfield	170	160	155	95	50-45	20	25	99	

Table 5

LYSAGHT[®] folded ridge

Dimensions (mm)										
	Batten		Sheet	Throat						
Apex r	idge to to batten	e of		Characteristic at	Ric	Feed				
15° 22.5°	22.5°	25°	Sneet overnang top of batten	Sneet to sneet	Тое	Step/ raise	Pan	width		
	Α		В	С	Е	F	G	(mm)		
180	175	170	95	55-65	22	25	150	400		
205	200	195	95	100-110	22	25	175	45		
	Apex r 15° 180 205	Batten Apex ridge to to batten 15° 22.5° A 180 175 205 200	Batten Apex ridge to toe of batten 15° 22.5° 25° A 2000000000000000000000000000000000000	Dimensions (n Batten Sheet Apex ridge to toe of batten Sheet overhang top of batten 15° 22.5° 25° A B 180 175 170 95 205 200 195 95	Dimensions (mm) Batten Sheet Throat Apex ridge to toe of batten sheet overhang top of batten Sheet to sheet 15° 22.5° 25° Sheet overhang top of batten Sheet to sheet 180 175 170 95 55-65 205 200 195 95 100-110	Dimensions (mm) Batten Sheet Throat Apex ridge to toe of batten Sheet overhang top of batten Sheet to sheet Rice 15° 22.5° 25° Sheet overhang top of batten Sheet to sheet Toe A B C E 180 175 170 95 55-65 22 205 200 195 95 100-110 22	Batten Sheet Throat Ridge Apex ridge to toe of batten Sheet overhang top of batten Sheet to sheet Ridge 15° 22.5° 25° Sheet overhang top of batten Sheet to sheet Ridge 18° 175 170 95 55-65 22 25° 205 200 195 95 100-110 22 25°	Dimensions (mm) Batten Sheet Throat Ridge Apex ridge to toe of batten Sheet overhang top of batten Sheet to sheet Ridge Ridge 15° 22.5° 25° Sheet overhang top of batten Sheet to sheet Toe Step/ raise Pan 180 175 170 95 55-65 22 25 150 205 200 195 95 100-110 22 25 175		

Figure 3.1.3

Table 5a

LYSAGHT® folded ridge (Commercial applications)

	Dimensions (mm)											
		Batten			Sheet		Throat	Ridge				
	Apex ridge to purlin edge			Sheet ove	erhang to	op of purlin	Sheet to sheet	Ridge barge legs			Feed	
	1°	5°	15°	1°	5°	15°					wiath	
Application		Α			В		с	E	F	G	(mm)	
Commercial/Industrial		173		95		110	140-180	22	25	200	500	

Figure 3.1.4

Table 6

Skillion roof ridge/Apron

	Dimensions (mm)												
		Batten		Sheet Throat		Ridge Barge/Apron							
	Apex ridge to toe of batten			Sheet overhang	Sheet to sheet	Ridge barge legs							
	15°	22.5°	25°	top of batten		Тое	Step/Raise	Pan	Wall side				
Region		Α		В	С	Е	F	G	н				
Non cyclonic	190	185	180	95	40-35	25	25	150	75				
Cyclonic	240	235	230	95	90-85	25	25	200	75				

It is important that a consistent line is maintained at the ridge line of sheeting as per the dimensions noted in Figure 3.1.1-3.1.4 and Tables 4-6 as appropriate. Do not screw fix the ridge line of roof sheets. Sheet pans should <u>not</u> be turned up.

3.2 STEP 2 - BEGIN VENT-A-ROOF® LOUVRE INSTALL

Looking at ridge or hip line, begin the installation of VENT-A-ROOF[®] louvres from left to right.

For hipped roofs where only ridge potions of the roof are to be vented, start installation of the VENT-A-ROOF[®] louvres at the crown point of the roof.

3.3 STEP 3 - SLIDE LOUVRE OVER SHEET

Slide VENT-A-ROOF® louvre over the end of metal sheet.

Finish screw placement through the louvre. Screws are to be installed as per screw pattern shown at Table 2. Install full sealant bead to the end of louvre and foam.

3.5 STEP 5 - ADD ADDITIONAL LOUVRES

Slide next length of louvre at an angle overlapping and insert it into the crimped end of the installed louvre, making sure the sealant and foam make good contact to ensure a weather-tight seal.

While fitting the louvre against previous louvre, ensure that the foam is in place and against metal sheeting. Screw in place as done in Steps 3 - 5.

3.4 STEP 4 - FIX LOUVRE TO SHEET

At the left end of louvre, apply enough pressure that the metal sheeting embeds a minimum of 3mm into the foam. To hold louvre into place, install one screw (10-16 x 16mm Teks[®] screw minimum class 3 coating) through the top of louvre into the rib of sheeting.

Continue installing the louvre from left to right screwing the top line of the louvre first. Ensure the louvre is pulled tight when installing the 10-16 x16mm Teks[®] screws so that the sheet is embedded a minimum of 3mm into the foam.

Continue along the ridge, repeating Steps 3 - 5.

3.6 STEP 6 - INSTALL RIDGE CAP

Install ridge cap in accordance to AS 1562.1 using screws recommended in the LYSAGHT® Roofing and Walling Installation Manual. Screws should penetrate ridge, VENT-A-ROOF® louvre, roof sheet and batten below providing fixing to both roof ridge and ridge cap.

No scribing is required with VENT-A-ROOF[®] louvre, due to the closed cell weather tight foam within the VENT-A-ROOF[®] louvre.

For applications where only the ridge portion of the roof is utilising VENT-A-ROOF® the VENT-A-ROOF® ridge will sit 25mm above the hips caps. This will allow the VENT-A-ROOF® roll top ridge to neatly marry to the hip roll top ridge as shown in Figure 3.6.1.

Please note that for South Australian applications utilising roll top ridge that some pressure is required to "spread" the roll top ridge to cover the VENT-A-ROOF® louvres and maintain ridge throat dimension.

3.7 HIP INSTALL

The same principles apply to installation of hips with critical dimensions being identical

3.8 SCREW PATTERN

Cyclonic and Non Cyclonic

Table 7

Louvre fixing screw pattern - cyclonic and non cyclonic applications

		LYSAGHT		
Sheet Type	CUSTOM ORB®	TRIMDEK [®]	KLIP-LOK 700 [®]	Serou
shown at	Figure 3.8.1	Figure 3.8.2	Figure 3.8.3	Screw
Recommended spacing of VENT-A-ROOF® fixing screws		1st and last sheet rib		
	then every 4th rib	then every 2nd rib	then every rib	10, 10
Distance from front/bottom edge of VENT-A-ROOF® louvre		60mm		— 10 - 16 x 16mm Toks®
Distance from top edge of VENT-A-ROOF® louvre		25mm		- TOITIITI TEKS
Fixing spacing at VENT-A-ROOF [®] joints		Both sides of join		
	Every 2nd rib	Every rib	Every rib	As per Lysaght
Spacing of ridge cap fixing screws	for cyclonic ap	pplications cyclonic zips sho ridge cap fixing screws	uld be used for	published data for roof sheeting

Figure 3.6.1

4.0 INSTALLATION - RETRO-FIT

The vast majority of Australia's existing residential and light commercial and industrial buildings do not comply with the current NCC2022 specification for roof ventilation.

Installation of a VENT-A-ROOF[®] system to an existing building can provide immediate benefits to health and amenity of the building by improving condensation management and reducing thermal loads within the roof space and thus living space.

4.1 STEP 1 - DETERMINE REPLACEMENT RIDGE FLASHING DIMENSIONS

Remove a small number of screws from a portion of the exist ridge to allow measurement from the ridge screw line (and mid-line of existing batten) to the top of the existing sheets.

Compare the measured dimensions with those in Table 4 to determine if roll top ridge or a special folded ridge is required.

Measure and order ridge lengths and VENT-A-ROOF® louvres.

4.2 STEP 2 - REMOVE EXISTING RIDGE

Remove the portion of the existing ridge to be replaced by the VENT-A-ROOF® system to expose the ridge throat.

4.3 STEP 3 - MARK ROOF SHEETS TO BE CUT

From the calculations determined in Step 1 mark each end of the ridge to be cut. Using a chalk line ping a line across the ridge in preparation to cut the sheets back.

4.4 STEP 4 - CUT BACK THE SHEETS

Using a cold cut steel saw, excalibur shears or similar cut back the roof sheets and cut back any insulation or sarking to reveal throat gap.

4.5 STEP 5 – INSTALL VENT-A-ROOF® LOUVRES

Start laying VENT-A-ROOF[®] louvres, left to right, as per 3.2 through to 3.10 of new installation instructions following appropriate screw patterns.

4.6 STEP 6 – INSTALL NEW RIDGE FLASHINGS

Following guidelines from 3.10 cut and screw fix new ridge flashings to vented ridge.

4.7 STEP 7 - CLEAN UP

Clean all debris from roof paying particular attention to swarf from cutting of sheets and screw installation.

4.8 STEP 8 – INSTALL EAVE VENTS

Install 400mm x 200mm eave vents, if required, in accordance with manufacturer's instructions.

5.0 APPENDICES

FORM 15 - BAL-12.5 - 40

his form is the approved form that mus f the Building Regulation 2021 (Design sstalled or carried out as stated in this dditional explanatory information is in	t be used in accordance with section 10 of the <i>Building Act</i> 1975 and sections 73 and 77 -specification certificate) stating that an aspect of building work or specification will, if form, comply with the building assessment provisions. cluded in the Appendix at the end of this form.
Property description	Street address (include number, street, suburb/locality and postcode)
This section need only be completed if details of street address and property description are applicable	All Australia State Postcode
E.g. in the case of (standard/generic) pool design/shell manufacture and/ or patio and carport systems this	Lot and plan details (attach list if necessary)
section may not be applicable. Where applicable, the description must identify all land the subject of the application.	Local government area the land is situated in
The lot and plan details (e.g. SP/RP) are shown on title documents or a rates notice.	
If the plan is not registered by title, provide previous lot and plan details.	
Description of aspect/s certified Clearly describe the extent of work covered by this certificate, e.g. all structural aspects of the steel roof beams.	Vent a Roof product as per product guide to BAL 12.5- 40
Basis of certification Detail the basis for giving the certificate and the extent to which tests, specifications, rules, standards, codes of practice and other publications were relied upon.	AS3959 2009 Construction of buildings in bushfire prone areas. P ROACT Fire Engineering Opinion dated 24th June 2024 NCC2022 Volume 2 H7P5 and H7D5

 Reference documentation Clearly identify any relevant documentation, e.g. numbered structural engineering plans. 	AS3959 2009 Constructi ROACT Fire Engineering NCC2022 Volume 2 H7P	on of buildings in bushfire pro Opinion dated 24th June 2024 5 and H7D5	ne areas. P
5. Building certifier reference number and building development application number	Building certifier referen Building development a	ce number pplication number (if available	2)
5. Appointed competent person details Under Part 6 of the Building Regulation 2021 a person must be assessed as a competent for the type of work (designs-psecification) by the relevant building certifier.	Name (in full) William Mark Ander Company name (if applin PROACT Business phone numble 0426801512 Email address mark.anderson@pr Postal address 12 Navigator Place Hendra Licence class or registrat RPEQ 16514 Licence or registration n	son cable)	Contact person Mobile number
7. Signature of appointed competent person This certificate must be signed by the individual assessed and appointed by the building certifier as competent to give design-specification help.	Signature William Mark Anders	On Digitally signed by William Mark Anders Date: 2004.06.27 06.28.13 + 10'00'	Date 27/06/2024
DCAL GOVERNMENT USE ONLY		Reference number/s	

Form 15 Complian building of This form is the approved form that mus of the Building Regulation 2021 (Design installed or carried out as state in dot	ce certificate for design or specification
1. Property description This section need only be completed if details of street address and property description are applicable. E.g. in the case of (standard/generic), pool design/shell manufacture and/ or patio and carport systems this section may not be applicable. Where applicable, the description must identify all land the subject of the application. The lot and plan details (e.g. SP/RP) are shown on lite documents or a rates notice. If the plan is not registered by tile, provide previous lot and plan details.	Street address (include number, street, suburb/locality and postcode) All metal roofs over 10 degree pitch
 Description of aspect/s certified Clearly describe the extent of work covered by this certificate, e.g. all structural aspects of the steel roof beams. 	Vent-A-Roof, as per product guide. Open area of 9,504mm2/LM for single sided applications. 19,008mm2/LM for ridge/Jual sided applications. Complies to use in the following applications High level ventiation at the following single/Jual pitch ranges as classified via NCC 10.8.3 - 10-15, 15-75, Cathedral Ceilings
 Basis of certification Detail the basis for giving the certificate and the extent to which tests, specifications, rules, standards, codes of practice and other publications were relied upon. 	NCC2022 - 10.8.3 Ventilation of Roof Spaces

Date received		Reference number/s		
OCAL GOVERNMENT USE ONLY	÷			
individual assessed and appointed by the building certifier as competent to give design-specification help.				
7. Signature of appointed competent person This certificate must be signed by the	Signature	M Gricker		Date 26 July 2024
	Licence or registration Victoria PE000535	number <i>(if applicable)</i> 5		
	Licence class or regist Registered Profess	ration type (if applicable) ional Engineer F.AIRA	H F.IEAu	st CPEng NER APEC
	Ringwood North		State VI	C Postcode 3134
	Postal address 54 Felix Crescent			
	fricker@optusnet.	com.au		
relevant building certifier.	0414804097			0414804097
Regulation 2021 a person must be assessed as a competent for the type of work (design-specification) by the	JAMES M FRICKER	PTY LTD		James Fricker
details Under Part 6 of the Building	James Fricker	licahle)		Contact person
5.Appointed competent person	Name (in full)			
	Building development	application number (if av	ailable)	
5. Building certifier reference number and building development	Building certifier refer	ence number		
	Vent-A-ROOT CAD drav	vings provided to 3 Fricker	22 July 20.	24
structural engineering plans.	May 2018.			
Clearly identify any relevant documentation, e.g. numbered	Farabaugh Engineering	g and Testing Inc's Leakage	e Test perf	ormance report dated 21

This form is to be used by an appointed	competent person for the purposes of section 10 of the Building Act 1975 and sections 73
and 77 of the Building Regulation 2021 will, if installed or carried out as stated	(Design-specification certificate) stating that an aspect of building work or specification in this form, comply with the building assessment provisions.
Additional explanatory information is in	cluded in the Appendix at the end of this form.
1. Property description	Street address (include number, street, suburb/locality and postcode)
This section need only be completed	Australia Wind Region A 1-7, B1, B2, C & D
if details of street address and property description are applicable.	State QLD Postcode
E.g. in the case of (standard/generic) pool design/shell manufacture and/ or patio and carport systems this	Lot and plan details (attach list if necessary)
The description must identify all land the subject of the application.	Local government area the land is situated in All Australia
The lot and plan details (e.g. SP/RP) are shown on title documents or a rates notice.	
If the plan is not registered by title, provide previous lot and plan details.	
2.Description of aspect/s certified Clearly describe the extent of work covered by this certificate, e.g. all structural aspects of the steel roof beams.	Vent-A-Roof product, as per product guide.
 Basis of certification Detail the basis for giving the certificate and the extent to which tests, specifications, rules, standards, codes of practice and other publications were relied upon. 	AS 1562.1:2018 – Design and Installation of Sheet Roof and Wall Cladding Part Metal. AS/NZ5 1170.2:2021 – Structural Design Actions Part 2: Wind Actions. AS 4055:2021 – Wind Loads for Housing.

 Reference documentation Clearly identify any relevant documentation, e.g. numbered structural engineering plans. 	Ez Vent-N-Closure System Cro December 2018. Sekisui Foam Australia's Mate Foam, provided to J.C. Engine Ez Vent-N-Closure Profile Drav 2018. Vent-A-Roof CAD Profile Draw Vent-A-Roof's Brochure for Re December 2018. Machinery Solutions Pty. Ltd.' Farabaugh Engineering and Te 21st May 2018.	ss Section drawings, provided to J.C. Engineers or rial Safety Data Sheet for Volara Crosslinked Polyc ers on 4th February 2019. vings, provided to J.C. Engineers on 10th Decemb sidential Homes, provided to J.C. Engineers on 10 s Report for Vent-A-Roof, dated 18th October 201 sting Inc.'s Air Leakage Test Performance Report, G
5. Building certifier reference number and building development application number	Building certifier reference numt Building development applicatio	ver n number (îf available)
6.Appointed competent person details Under Part of of the Building Regulation a person must be assessed as a competent for the type of work (design-specification) by the relevant building certifier.	Name (in full) Brendan Nielsen (on beh Company name (if applicable) J.C. Engineers Pty. Ltd. Business phone number (07) 5631 4920 Email address PO Box 3519 Southport Licence class or registration type RPEQ Licence or registration number (if 18317	alf of J.C. Engineers Pty. Ltd) Contact person Brendan Nielsen Mobile number State QLU Postcode 4215 (If applicable)
7. Signature of appointed competent person This certificate must be signed by the individual assessed and appointed by the building certifier as competent to give design-specification help.	Signature	Date 29/03/2023
OCAL GOVERNMENT USE ONLY	D .6	

JCEStr	uctural
CONCLUSIO	NS AND RECOMMENDATIONS
Based on th residential a product allo product per	e abovementioned details, it is determined that the Vent-A-Roof product will only improve the structural integrity ind commercial properties, when installed in the ridgeline areas of the metal sheeting roofing. The Vent-A-Roof ws a higher rate of air extraction from the roof cavity as air pressures increase. Therefore, it can be said that the forms better in higher air pressures and therefore more intense weather.
The attache	d Form 15 provides engineering certification for these structural aspects of the Vent-A-Roof product.
We would li to discuss, if	ke to thank you for your business and wish you the best for your future works. Please do not hesitate to contact m i needed.
Kind Regard	s, http://
Brendan M	Vielsen
Director 8	Principal Engineer
(07) 5631 BEng (Civil/Stru & Managemen	4920 xtural), MEng (Management), GCert (Advanced Engineering), APEC Engineer, CPEng, IntPE (Aus), RPEQ (Civil), NER, RPEng, PEng, MIEAust, MAIPM
On behalf of J.0	2. Engineers Pty.Ltd.

Farabaugh Engineering and Testing Inc.				
FET Project No. T346	-12A			
Date: October 5, 201	2			
Revised May 2	1, 2018			
	Perfor	mance Test Summary		
		TAS-100A		
Test Procedure for Soffit Ventilation St	wind and Wind Driven I rip and Continuous or I	Rain Resistance and/or In Intermittent Ventilation S	creased Windspee System Installed at	d Resistance of the Ridge Area
		On		
	E	Vent-N-Closure		
		For		
		Vent-A-Roof		
		38 Nuemann Rd.		
		Capalaba Q 4157		
Dont	- Al	Australia		
Daniel C. Farabaug	n,			
Farabaugh Enginee	ring and Testing Inc.			

pose of this testing of Custom Metal Components, Inc.'s "EZ Vent-N-Closure" in ance with the following testing standard: 1) TAS-100A to establish the resistance to wind driven rain of a continuous or intermittent ridge area ventilation system when installed in a discontinuous roof system. INTERCY Wetal Components, Inc.'s EZ Vent-N-Closure metal roof ridge ventilation system for wildings has passed the windspeed and water spray intervals for wind driven rain to testing.
Ince with the following testing standard: TAS-100A to establish the resistance to wind driven rain of a continuous or intermittent ridge area ventilation system when installed in a discontinuous roof system. mmany Metal Components, Inc.'s <i>EZ Vent-W-Closure</i> metal roof ridge ventilation system for uidlings has passed the windspeed and water spray intervals for wind driven rain see testing.
 TAS-100A to establish the resistance to wind driven rain of a continuous or intermittent ridge area ventilation system when installed in a discontinuous roof system. Metal Components, Inc.'s EZ Vent-N-Closure metal roof ridge ventilation system for uildings has passed the windspeed and water spray intervals for wind driven rain see testing.
Wind Speed Water Time
s (MPH) Water Spray Rate Spray (MIN) Observations
(MPH) (KM/H) (IN/HR) (MM/HR)
35 56.3 8.8 223.5 ON 15 PASS(0 mL)
70 1136 88 2225 ON 15 04510-11
0 0 0 223.5 ON 15 PASS (0 mL)
90 144.8 8.8 223.5 ON 15 PASS (c1 m)1
110 177 8.8 223.5 ON 5 PASS (<1 mL)
0 0 - · OFF 5 -
Vimpoly Water Spray Rate Water Spray Rate Water Spray Rate Time Spray Rate Observation (MHV) (0x/H) (0x/H) (0x/H) (0x/H) (0x/H) 0

Farabau	igh Engine	ering and Te	sting Inc.	
Project No. T109-18A				
Report Date: January 25 Revised M	5, 2018 fay 21, 2018			
No. of Pages: 4 (inclusi-	ve)			
	PERFORM	MANCE TEST REPO	DRT	
	ASTM E28	3 AIR LEAKAGE 1	EST	
		ON		
	MET	TAL ROOF VENT		
		FOR		
	Ň	ENT-A-ROOF		
Report Prepared By:				
Patrick J. Farabaugh				
Reviewed and Approve	d By:			
Paul G. Farabaugh	~ <			

Project No. T109-18A		
OBJECTIVE: The purpose of this testing w conditions set forth in the refi	as to determine the performance erenced standards and as provi	ce of the test specimens under th
TEST ASSEMBLY:		
The mock-up consisted of a M slotted holes as shown on the	detal Roof Vent fabricated fro attached drawing.	m 26 ga galv. metal with punch
The air leakage test was per / Air Leakage Through Exterior Differences Across the Speci uniform load the specimen m	ASTM E283-04 "Standard Tes or Windows, Curtain Walls, an men" and as provided herein. ock-up.	t Method for Determining Rate d Doors Under Specified Press A controlled blower provided a
	TEST DATA	
Test Date: 1/25/18		
Specimen: 26 ga Slotted M	letal Roof Vent	
Test Area: 12" (304.8 mm)	Length of Slotted Holes	
ASTM E283-04 Air Test		
	INFILTRATION	
TEST PRESSURE (PSF)	TEST PRESSURE (Pa)	AIR LEAKAGE RATE (CFM)
1.57	75.17	44.0
6.24	298.77	86.1
	EXFILTRATION	
TEST PRESSURE	TEST PRESSURE	AIR LEAKAGE
(PSF)	(ra)	(CFM)

PERFORMANCE TEST REPORT ASTM E283 AIR LEAKAGE TEST ON METAL ROOF VENT FOR VENT-A-ROOF $^{\rm \otimes}$ (continued)

CONDITIONS OF USE

If you use this Manual, you acknowledge and agree that your use is subject to the terms and conditions in this Manual. Lysaght, its agents, officers, employees, sub-contractors or consultants make no representations, either expressed or implied, as to the suitability of the information and data in this Manual for your particular purposes. It's your responsibility to ensure the design you use is appropriate for your needs, the products you have purchased, your site and structural limitations and your building and construction capabilities.

This Manual endeavours to present information on products, details, installation and practices in a clearly prescribed manner and it is the user's responsibility to apply the information in the way intended. If there is any uncertainty then it is the user's responsibility to seek clarification.

Where we recommend use of third-party materials, ensure you check the qualities and capabilities of those products with the relevant manufacturer before use.

USE OF GENUINE MATERIALS

Structures in this Manual should only be built or constructed using genuine LYSAGHT® or recommended third party products. Except as otherwise provided in these terms, any warranties only apply to you (if at all) if you use the recommended genuine LYSAGHT® or third-party products and method of construction.

CHECK DELIVERY

It is important that you check all materials delivered to site against your invoice before you use them in your building or construction to ensure all components have arrived, are of the appropriate quality and are ready for installation. THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY

PRODUCT DESCRIPTIONS

 All descriptions, specifications, illustrations, drawings, data, dimensions, and weights contained in this publication and websites containing information from Lysaght are approximations only. They are intended by Lysaght to be a general description for information and identification purposes and do not create a sale by description. Lysaght reserves the right at any time to:

(a) Supply goods with such minor modifications from its drawings and specifications as it sees fit, and

(b) Alter specifications shown in its publications and websites to reflect changes made after the date of publication.

DISCLAIMER, WARRANTIES AND LIMITATION OF LIABILITY

- This publication is intended to be an aid for all trades and professionals involved with specifying and installing LYSAGHT® products and not be a substitute for professional judgement.
- Terms and conditions of sale are available at lysaght.com/terms
- Except to the extent to which liability may not lawfully be excluded or limited, BlueScope Steel Limited will not be under or incur any liability to you for any direct or indirect loss or damage (including, without limitation, consequential loss or damage such as loss of profit or anticipated profit, loss of use, damage to goodwill and loss due to delay) however caused (including, without limitation, breach of contract, negligence and/or breach of statute), which you may suffer or incur in connection with this publication.

FOR DETAILED PRODUCT INFORMATION, MANUALS AND PROJECT CASE STUDIES VISIT:

COLORBOND[®], SUPERDURA[®], ZINCALUME[®], LYSAGHT[®] and ® product names are registered trademarks of BlueScope Steel Limited and ™ product names are trademarks of BlueScope Steel Limited. © 2024 BlueScope Steel Limited. ABN 16 000 011 058. All rights reserved.

